The Crystal Structure of the New Rare-earth Silicate Er₄PbSi₅O₁₇

By Gerald B. Ansell*

(Research Department, Michelson Laboratory, China Lake, California)

and BARBARA WANKLYN

(Clarendon Laboratory, University of Oxford)

Summary An X-ray crystallographic structure determination of a previously unidentified silicate type with an empirical formula Er₄PbSi₅O₁₇ is described.

THE crystallization of Er₄PbSi₅O₁₇ from the PbO-SiO₂Er₂O₃ system at temperatures between 750 °C and 1250 °C has been described.¹ The compound is of particular interest because a spectral analysis in the $4s_{3/2}$ region of the spectrum shows there are eight absorption lines. Crystal data: pink crystals, monoclinic, a = 5.534, b = 10.58, c = 6.960 Å, $\beta = 107 \cdot 2^{\circ}$. Systematic absences for 0k0 are k = 2n + 1. The subsequent structure determination has shown the space group to be $P2_1/m$ with Z = 4 for the $1/2[Er_4Pb (Si_2O_7)(Si_3O_{10})$] unit. X-ray intensity data were collected

The structure is most unusual since it possesses a combination of both ${\rm Si_3O_{10}^{6-}}$ and ${\rm Si_2O_7^{6-}}$ anions. The packing of these around the erbium and lead is shown in Figure 1. A space group requirement is that these anions have mirror and centrosymmetric symmetry, respectively. The centrosymmetric Si₂O₇⁶⁻ anion with a linear bridging Si-O-Si angle has been reported in $Sc_2Si_2O_7$,² $Yb_2Si_2O_7$,³ and $Er_2Si_2O_7.^3$ The $Si_3O_{10}^{8-}$ anion is quite rare in silicates and has only previously been described in Ho4(Si3O10)SiO,4 ardenite,⁵ kilchoanite⁶ and (Ca₈Si₅O₁₈) natrolite.⁷ The two noncrystallographically equivalent erbium ions are in highly distorted octahedral co-ordination with their six nearest oxygen neighbours. Lead has a distorted five-fold pyramidal co-ordination with its nearest oxygen neighbours.

on an automated diffractometer using Mo- K_{α} radiation and a scintillation counter. The structure was solved by Patterson and Fourier methods. The full-matrix leastsquares structure-factor refinement using 864 absorption corrected reflections gives an R value of 0.091.

FIGURE 2

These metal-oxygen groups are building units for the complicated three-dimensional Er-O-Pb-O clusters shown in Figure 2. Si-O distances range from 1.57 to 1.79 (0.06) (av. 1.64) Å within the $Si_2O_7^{6-}$ anions and 1.59 to 1.69 (0.06) (av. 1.67) Å within the ${\rm Si_3O_{10}}^{\rm s-}$ anions. Er(1)–O distances range from 2.18 to 2.28 (0.04) Å, Er(2)-O from 2.22 to 2.46 (0.04) Å, and Pb-O from 2.40 to 2.51 (0.04) Å.

(Received, 29th May 1975; Com. 602.)

- ¹ B. M. Wanklyn, F. R. Wondre, G. B. Ansell, and W. Davison, J. Materials Sci., in the press.
- D. W. J. Cruickshank, H. Lynton, and G. A. Barclay, Acta Cryst., 1962, 15, 491.
 Y. I. Smolin, and Y. F. Shepelev, Acta Cryst., 1970, B26, 484.
- 4 J. Felsche, Naturwiss., 1972, 59, 35.
- ⁵ G. Donnay and R. Allman, Acta Cryst., 1968, B24, 845.
- ⁶ H. F. W. Taylor, Min. Mag., 1971, 38, 293.

7 W. M. Meier, Z. Krist., 1960, 113, 420; L. Pauling, Proc. Nat. Acad. Sci., U.S.A., 1930, 16, 453; W. H. Taylor, Proc. Roy. Soc., 1934, A145, 80.